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Consider a polynomial spline C(l) of degree n in the class Cn - l ( - 00, (0)
with its nodes at the integers and which satisfies

(j = 0, ±1,...). (1)

Such a spline is commonly referred to as a cardinal spline. If n is odd, then
C(t) exists provided the values of c(n-l)(t) at the nodal points satisfy the
doubly-infinite system of linear equations

r
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M_2 (ii~ 1)
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C_3(n) C_2(n) C_l(n) Co(n) M l

( 2ii )M 2 ii+l
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'-- (2)

where M j = c(n-l)(j) (j = 0, ±1, ...), the matrix entries C;(n) are given in [1],
ii is defined by 2ii = n - 1,1 and we let (iii) = 0 for k < 0 or k > 2n. Under

* This work was supported by the Office of Naval Research, Contract Nom 562(36)
with Brown University.

1 We assume throughout this discussion that n > O. The case n = 0 is the piecewise
linear case and offers no difficulty. For an early investigation of the interpolation problem
defined by (1) and more general problems, see [4].
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these circumstances the quantities M j can be given explicitly and no other
spline satisfying (1) has a bounded (n - l)-th derivative. These assertions
are an immediate consequence of the analysis contained in [1].

Assuming for the moment that we have solved the system (2) for the
quantities 1\1j , we then could exhibit C(t) explicitly by proceeding as follows:
Consider the related spline C(t) defined on [0, co) by

C(O = 1, (Ml - M o) t n (0 ::c:;; t ::c:;; 1),
n.

C(t) = 1" (Ml - M o) tn +~ (M2 - 2Ml + Mo)(t - 1)n
T.. n. (1 < <?)-......::::. t ....-..; _,'

We now extend the definition of C(l) to (- OC, 00) by letting CU) = C( -r»
for t ::c:;; 0. Our definition of C(t) is such that

or equivalently,

CCt) = C(t) + P"oCt)

(-oc < t < 00)

(-oc < t < 00),

(4)

(5)

where p,Jt) is a polynomial of degree n - 1. In asserting that (4) is valid
on (-oc, co) and not simply [0, 00) we are using the fact that the matrix
in (2) is symmetric about the diagonal containing the entries Co(n) and tbe
right hand member is symmetric about the entry _(~ii).

A straightforward procedure would be to determine P,,(t) from 11 inter
polation conditions such as

(j = 0, 1,... , n - 1). (6)

This, in fact, could be done with the result that the formula

would be completely determined and would define CCt) on the interval
[j,j + 1] for any nonnegative integer j. The formula C(t) = C(-t) would
then define eel) on the corresponding interval (-j - 1, -j).

Numerically, this is not eery satisfactory for large values of j since the
evaluation of the summation is time-consuming and inherently suffers from
rounding errors. Consequently, we modify our approach so as to obtain
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CCt) in a more compact form which sheds considerable light on its intrinsic
structure.

In the cubic case it is known [2, 3] that

CCt) = (3'\ + 2) t3 - 3('\ + 1) t 2 + 1 (0 <; t <; 1),

CCt) = 3N[('\ + 1)(t - j)3 - (,\ + 2)(t - j)2 + (t - j)] (8)

(j <; t <;j + 1; j = 1,2,...),

where ,\ = -2 + v3. Since CCt) is an even function, the relation
CCt) = CC-t) defines CCt) on (- 00, 0). It follows from (8) that essentially
only two cubic arcs are needed to define CCt) on [0, (0) and hence on
(- 00, (0): one for [0, 1] and one for [1, 2]. The arc for [j, j + 1] differs
from the arc for [1, 2] only in that t - 1 is replaced by t - j and arc equation
is multiplied by ,\i-I. We now seek to obtain the analogue of this result for
higher odd values of n.

We have already utilized the auxiliary spline G(t) for which we have on
[0, (0) the representation

G(t) = ~ (MI - M o) t n + ~ ±(MK+1 - 2MK+ MK:...I)(t - K)n
n. n'i=K

(0 <;j ~ t <;j + 1). (9)

Expanding (t - K)n by the binomial theorem and interchanging the order
of summation we obtain

n

G(t) = I Wljt l

j~O

(0 ~ j <; t ~ j + 1), (10)

(l = 0, 1,... ,11 - 1),

(11)
1 i 1

Wnj = ---. (MI - M o + I (MK+! - 2MK+ M K- I )) = ---. (Mi+1- Mi)·
n. K=I n.

i??-K

Using Eq. (5) and the fact [1] that

M K = 0(1 rji /K), (12)

as K -+ 00 where -1 < rji < 0, it follows that 1imi..."" Wlj exists for
1=0, 1,..., n. Moreover, since C(j) = °for j > 0, the growth of the non
constant terms of G(t) must be offset by that of the nonconstant terms of
P",,(t) as t becomes infinite. As a consequence, if we let

n

P",,(t) = I wIt I,
1=0

(13)
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then

WI = -limw'i
J->'"

= - ~ (llZ) f (-K)n-'(MK+I - 2MK + M K-l)
lZ. . K=1

for Z= 1, 2,... , n. In particular,
1

W n -l = -J~~ Wn-l,i = (n _ I)! Mo·

Also, we observe that

(14)

(I 5)

(16)

thus Eq. (16) is consistent with the fact that from earlier considerations
P",(t) is known to be of degree n - 1. Furthermore, since ceO) = 1, the
constant term in P",(t) must be unity.

In view of the preceding discussion we are led to the representation

e(t) = 1, (M1 - Mo) t n + ( ~ 1)' M otn
-

1

n. n.

1 n- 2 n '"
- I" L (Z) L (_K)n-I(MK +1 - 2MK + M K- 1) t l + 1

n. 1=1 K=1 (0 ~ t ~ 1). {17)

For 0 <j ~ t ~j + 1 we have

1
CCt) = --, (M1+1 - M j ) tn

n.

1 n-l '"-, L (n
Z
) L (_K)n-I(MK+1 - 2MK + M K- 1) t l + const

n. 1~1 K=i+l

1= I" (Mi+1 - M j ) t nIl.
1 '" n~

- I" L (MK+1 - 2MK + M K-J L (Ill) (-K)n-1t l + const
11. K+j=1 1~1

1 '"= - I" L (MK+1 - 2MK + M K _1)(t - K)n + const
n. K=i+l
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We now express e(t) in powers of t - j. Thus, the constant term vanishes
and

C(t) = - ~ f (MK+l - 2MK+ M K- 1)(t - j - (K - j))n + const
11. K~i+l

Consequently, we have

n

e(t) = L (Xjl(t - j)l
1~1

where

(0 < j ~ t ~ j + I), (18)

In view of (12) the sums in (19) are convergent so that the coefficients
(Xit (I = 1, 2,... , n) are well-defined.2

From the analysis in [lJ it follows that

Ii ( 2ii )JIILK = M K = n! L (_1)1+1 _ + . aj+K
i=-Ii n ]

ii 2- ii
_ , " ( 1)i+1 ( n )"- n. if:'-ii - ii + k w~l aw.i+K

where

(20)

(K = 0, 1,2,...),

(w = 1,2,... , ii). (21)

Here each 'w is a nonzero root of the Hille polynomial Pn(z, 1) interior
to the unit interval. With no loss in generality we assume,ii < , ii-1 < ... < '1 .
Now let

ii 2ii ,ii+IHKI

MK(w) = 111 I (-l)i+l (- + .) P'C)
j=-ii n } n 'w,l

(22)

2 Since the quantities M; have not been specified up to this point, Eqs. (I7)-(19) are
applicable to a much larger class of interpolation problems on (- 00, 00) than that defined
by (1).
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and let Cw(t) be the spline defined by (17)-(19) with 1111j replaced by I'v1j(w)
except that on the interval [0, 1] we replace the constant term by 1m. Thus,

n

C(t) = L Cult).
0)=",1

It should be noted that in the sense that

(23)

the splines Cw(t) resemble cardinal splines. However, except for n = 1, they
are not in cn-I( - 00, (0).

Suppose, now, that K > n. Then,

Consequently, for j > n, we have

(24)

(l = 0, 1,2,... ,11). (25)

Thus, since the constant term lXjO(W) vanishes when the index j ;?c n, we see
for j > nthat the arc of Cw(t) on the interval j ~ t ~ j + 1 is the same as the
arc of CJt) on the interval j - 1 ~ t ~ j except that t - j + 1 is replaced
by t - j and the coefficients are multiplied by rw . It follows that each Calt)
behaves in the manner previously observed for C(t) itself in the cubic case
except that there are n + 1 arcs instead of two arcs.

Let us give Pn(z, t) the representation
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Consider the spline
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ii
B,,(t) = I b1CCt - I).

l~-ii

(27)

If j ?" 2n, then on the intervalj :(; t :(; j + 1 we have

ii ii n

Bn(t) = I b1 I I <Xj_l,8(W)(t - j)8
l=-ii w=1 8~1

ii ii n

= I b1 I (rw)-l I (XjsCw)(t - j)"
l~-ii w~1 8=1

= I If (XjsCW)(t_j)8l! I_ b1(rw)l!
w~1 8=1 1~-1I

=0, (28)

Thus, the spline Bn(t) vanishes identically outside a region consisting of
2n intervals on each side of t = 0.

In fact, aside from a constant factor the splines Bn(t) are included among
the splines with compact support considered by Schoenberg [4, 5]. Thus,
the support of the splines is actually smaller than the preceding argument
indicates. This is easily seen from the analysis contained in [4] and [6].

We close this paper with an example: we construct the cubic cardinal
spline CCt) using our formulas and verify that the resulting equations are,
indeed, in agreement with Eq. (8).

In the cubic case we have n = 1 so that .Mo and M 1 are the only M j that
need be calculated. Let 1"1 be denoted by ..\. Then from (2)

1 ( 2 ) ..\1+11+01
M o = 3! .I (_1)1+

1
1 +. P '(..\ 1)'

J=-1 J a ,

But

PaCz, 1) = Z(Z2 + 4z + 1),

so that

Pa'(z, 1) = (Z2 + 4z + 1) + z(2z + 4).



CARDINAL SPLINES OF ODD DEGREE ON UNIFORM MESHES 435

Consequently,

since ,V + 41.. + 1 = O. Thus,

M o = _6_ [,\2 _ 2'\ + ,\2]
,\2 - 1

12'\
,\+1"

Similarly,

M = _6_ ~ (_1)1+1 ( 2 ) ,\2+i
1 ,\2 - 1 j~1 \1 + j

= >,,2 ~ 1 [,\ - 2,\2 + ,\3]

6'\('\ - 1)
,\+1

On the interval 0 ~ t ~ 1 we have

(29)

(30)

~ 1 (1 (,\ 1) 1) 12'\ 3 6'\2--62 - - ,\+I t +,\+l l

+ 16M3 + 32M,! + ...] t + 1

= (,\ - 3)'\ t3 +~ t2 _ [! M + M (1 --1-- ,\ + ,\2 --1-- •••)1 f ....!..- 1,\+1 ,\+1 2 0 1 I ,_.,~

_ (,\ - 3)'\ 3 + 6'\ 2 (1 + 1 I, 1) 1 ) Of + 1- ----X-+I t ,\ + 1 t + 2 2\'l - 1 _,\ lY1 0 t .

Consequently,

CCt) = (3'\ + 2) t3 - 3('\ + 1) t2+ 1,

if we take into account the relation

,\2 + 4'\ + I = O.

(31)
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Finally, on an interval 0 <j ~ t ~j + I, we have

CCt) = 3\ t (_1)3-1+1 C) f: (MK+l - 2MK+ M K-1)(K - j)3-/{t - j)l
. l~1 K=i+l

= - ~ x 3 f: (MK+l - 2MK+ M K_1)(K - j)2(t - j)
K~i+l

+ ~ x 3 f: (MK+l - 2MK+ M K- 1)(K - j)(t - j)2
K~i+l

- ~ f: (MK+1 - 2MK+ M K_1)(t - j)3
K~i+l

+ ~ M 1 f: (,\2 - 2'\ + 1) ,\K-2(K -j)(t - j)2
K=i+l

= - M1 (,\ _ 1)2,\1-1 I K2,\K-l(t - j)
2 K~O

= - ~1 (,\ _ I)W-1 [(t - j)3 f: ,\K - 3(t - j)2 f: K'\K-l
K~O K~O

+ 3(t - j) f: K2,\K]
K~O

_ (,\ - 1)3,\1 [ 1 (")3 3 ( 0)2- - :\ + 1 1 _:\ t -./ - (1 _ :\)2 t-./

+ 3('\ + 1) (t _ 0)]
(1 - :\)3 J

(1 - ,\)2 ,\1(t _ j)3 _ 3(1 - ,\) ,\1(t _ j)2 + 3,\1(t _ j)
:\+1 :\+1 "
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Again, since :\2 + 4J\ + 1 = 0, we obtain

C(t) = 3J\j[(J\ + I)(t - j)3 - (J\ + 2)(t - j)2 + (t -j)].

Since Eqs. (29) and (30) are identical with Eqs. (8) our formulas are verified
for the cubic case. For n > 1 no great algebraic simplification takes place,
but our formulas are still quite amenable to numerical computation for
reasonable values of n.

One useful application of cardinal splines on ( - co, 00) is that of obtaining
a basis of splines for a finite interval [a, b]. We can assume without loss in
generality that b - a is an integer since the modifications necessary for an
arbitrary spacing h are minor. We now take the translations of CCt) so that
each such translation has its non-zero nodal point at one of the nodes in
[a, b]. If this is done, and the resulting splines are restricted to [a, b], then
-neglecting end conditions-we have the desired basis. To satisfy end
conditions we add the restrictions of the translations centered at the Ii nodal
points immediately to the left of t = a and immediately to the right of
t = b. Since all the basis splines are translates of the single spline CCt) only
one spline is really involved. Thus a considerable saving in computer storage
requirements can be made.
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